What can R do about a messy data format?
Sometimes I see data posted in a Stack Overflow question formatted like in this question. This is not the first time, so I have decided to ask a question about it, and answer the question with a way to make the posted data palatable.
I will post the dataset example here just in case the question is deleted.
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
As you can see this is not the right way to post data. As a user wrote in a comment,
It must've taken a bit of time to format the data the way you're
showing it here. Unfortunately this is not a good format for us to
copy & paste.
I believe this says it all. The asker is well intended and it took some work and time to try to be nice, but the result is not good.
What can R code do to make that table usable, if anything? Will it take a great deal of trouble?
Using data.table::fread:
x = '
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
'
fread(gsub('\\+.+\\n' ,'', x, perl = T), drop=c(1,7))
# Date Emp1 Case Priority PriorityCountinLast7days
# 1: 2018-06-01 A A1 0 0
# 2: 2018-06-03 A A2 0 1
# 3: 2018-06-03 A A3 0 2
# 4: 2018-06-03 A A4 1 1
# 5: 2018-06-03 A A5 2 1
# 6: 2018-06-04 A A6 0 3
# 7: 2018-06-01 B B1 0 1
# 8: 2018-06-02 B B2 0 2
# 9: 2018-06-03 B B3 0 3
The gsub part removes the horizontal rules. drop removes the extra columns caused by delimiters at the line ends.
The short answer to the question is yes, R code can solve that mess and no, it doesn't take that much trouble.
The first step after copying & pasting the table into an R session is to read it in with read.table setting the header, sep, comment.char and strip.white arguments.
Credits for reminding me of arguments comment.char and strip.white go to @nicola, and his comment.
dat <- read.table(text = "
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
", header = TRUE, sep = "|", comment.char = "+", strip.white = TRUE)
But as you can see there are some issues with the result.
dat
X Date Emp1 Case Priority PriorityCountinLast7days X.1
1 NA 2018-06-01 A A1 0 0 NA
2 NA 2018-06-03 A A2 0 1 NA
3 NA 2018-06-03 A A3 0 2 NA
4 NA 2018-06-03 A A4 1 1 NA
5 NA 2018-06-03 A A5 2 1 NA
6 NA 2018-06-04 A A6 0 3 NA
7 NA 2018-06-01 B B1 0 1 NA
8 NA 2018-06-02 B B2 0 2 NA
9 NA 2018-06-03 B B3 0 3 NA
To have separators start and end each data row made R believe those separators mark extra columns, which is not what is meant by the original question's OP.
So the second step is to keep only the real columns. I will do this subsetting the columns by their numbers, easily done, they usually are the first and last columns.
dat <- dat[-c(1, ncol(dat))]
dat
Date Emp1 Case Priority PriorityCountinLast7days
1 2018-06-01 A A1 0 0
2 2018-06-03 A A2 0 1
3 2018-06-03 A A3 0 2
4 2018-06-03 A A4 1 1
5 2018-06-03 A A5 2 1
6 2018-06-04 A A6 0 3
7 2018-06-01 B B1 0 1
8 2018-06-02 B B2 0 2
9 2018-06-03 B B3 0 3
That wasn't too hard, much better.
In this case there is still a problem, to coerce column Date to class Date.
dat$Date <- as.Date(dat$Date)
And the result is satisfactory.
str(dat)
'data.frame': 9 obs. of 5 variables:
$ Date : Date, format: "2018-06-01" "2018-06-03" ...
$ Emp1 : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 2 2 2
$ Case : Factor w/ 9 levels "A1","A2","A3",..: 1 2 3 4 5 6 7 8 9
$ Priority : int 0 0 0 1 2 0 0 0 0
$ PriorityCountinLast7days: int 0 1 2 1 1 3 1 2 3
Note that I have not set the more or less standard argument stringsAsFactors = FALSE. If needed, this should be done when running read.table.
The whole process took only 3 lines of base R code.
Finally, the end result in dput format, like it should be in the first place.
dat <-
structure(list(Date = structure(c(17683, 17685, 17685, 17685,
17685, 17686, 17683, 17684, 17685), class = "Date"), Emp1 = c("A",
"A", "A", "A", "A", "A", "B", "B", "B"), Case = c("A1", "A2",
"A3", "A4", "A5", "A6", "B1", "B2", "B3"), Priority = c(0, 0,
0, 1, 2, 0, 0, 0, 0), PriorityCountinLast7days = c(0, 1, 2, 1,
1, 3, 1, 2, 3)), row.names = c(NA, -9L), class = "data.frame")
md_table <- scan(text = "
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+",
what = "", sep = "", comment.char = "+", quiet = TRUE)
## it is clear that there are 5 columns
mat <- matrix(md_table[md_table != "|"], ncol = 5, byrow = TRUE)
# [,1] [,2] [,3] [,4] [,5]
# [1,] "Date" "Emp1" "Case" "Priority" "PriorityCountinLast7days"
# [2,] "2018-06-01" "A" "A1" "0" "0"
# [3,] "2018-06-03" "A" "A2" "0" "1"
# [4,] "2018-06-03" "A" "A3" "0" "2"
# [5,] "2018-06-03" "A" "A4" "1" "1"
# [6,] "2018-06-03" "A" "A5" "2" "1"
# [7,] "2018-06-04" "A" "A6" "0" "3"
# [8,] "2018-06-01" "B" "B1" "0" "1"
# [9,] "2018-06-02" "B" "B2" "0" "2"
#[10,] "2018-06-03" "B" "B3" "0" "3"
## a data frame with all character columns
dat <- setNames(data.frame(mat[-1, ], stringsAsFactors = FALSE), mat[1, ])
# Date Emp1 Case Priority PriorityCountinLast7days
#1 2018-06-01 A A1 0 0
#2 2018-06-03 A A2 0 1
#3 2018-06-03 A A3 0 2
#4 2018-06-03 A A4 1 1
#5 2018-06-03 A A5 2 1
#6 2018-06-04 A A6 0 3
#7 2018-06-01 B B1 0 1
#8 2018-06-02 B B2 0 2
#9 2018-06-03 B B3 0 3
## or maybe just use `type.convert` on some columns?
dat[] <- lapply(dat, type.convert)
Well, about this specific dataset I used the import feature in RStudio, but I took one additional step beforehand.
Copy the dataset into the Notepad file.
Replace all | characters with ,
Import the Notepad file using read.csv to RStudio using this code (seperate columns by ,).
But, if you mean use the R to fully understand it in one step, then I have no idea.
As it was suggested, you could use dput to save the content of a dataframe to a file, open the file in a text editor and paste its content. An example of mtcar's dataset limited to first 10 rows:
dput(mtcars %>% head(10), file = 'reproducible.txt')
The content of reproducible.txt can be used to make a dataframe/tibble as shown below. In such a case data the format is machine readable, but it is hard to be undestood by human at first glance (without pasting into R).
df <- structure(list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3,
24.4, 22.8, 19.2), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6), disp = c(160,
160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6), hp = c(110,
110, 93, 110, 175, 105, 245, 62, 95, 123), drat = c(3.9, 3.9,
3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92), wt = c(2.62,
2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44), qsec = c(16.46,
17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3), vs = c(0,
0, 1, 1, 0, 1, 0, 1, 1, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0,
0), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4), carb = c(4, 4, 1,
1, 2, 1, 4, 2, 2, 4)), .Names = c("mpg", "cyl", "disp", "hp",
"drat", "wt", "qsec", "vs", "am", "gear", "carb"), row.names = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant", "Duster 360", "Merc 240D", "Merc 230", "Merc 280"), class = "data.frame")
I will post the dataset example here just in case the question is deleted.
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
As you can see this is not the right way to post data. As a user wrote in a comment,
It must've taken a bit of time to format the data the way you're
showing it here. Unfortunately this is not a good format for us to
copy & paste.
I believe this says it all. The asker is well intended and it took some work and time to try to be nice, but the result is not good.
What can R code do to make that table usable, if anything? Will it take a great deal of trouble?
Using data.table::fread:
x = '
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
'
fread(gsub('\\+.+\\n' ,'', x, perl = T), drop=c(1,7))
# Date Emp1 Case Priority PriorityCountinLast7days
# 1: 2018-06-01 A A1 0 0
# 2: 2018-06-03 A A2 0 1
# 3: 2018-06-03 A A3 0 2
# 4: 2018-06-03 A A4 1 1
# 5: 2018-06-03 A A5 2 1
# 6: 2018-06-04 A A6 0 3
# 7: 2018-06-01 B B1 0 1
# 8: 2018-06-02 B B2 0 2
# 9: 2018-06-03 B B3 0 3
The gsub part removes the horizontal rules. drop removes the extra columns caused by delimiters at the line ends.
The short answer to the question is yes, R code can solve that mess and no, it doesn't take that much trouble.
The first step after copying & pasting the table into an R session is to read it in with read.table setting the header, sep, comment.char and strip.white arguments.
Credits for reminding me of arguments comment.char and strip.white go to @nicola, and his comment.
dat <- read.table(text = "
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+
", header = TRUE, sep = "|", comment.char = "+", strip.white = TRUE)
But as you can see there are some issues with the result.
dat
X Date Emp1 Case Priority PriorityCountinLast7days X.1
1 NA 2018-06-01 A A1 0 0 NA
2 NA 2018-06-03 A A2 0 1 NA
3 NA 2018-06-03 A A3 0 2 NA
4 NA 2018-06-03 A A4 1 1 NA
5 NA 2018-06-03 A A5 2 1 NA
6 NA 2018-06-04 A A6 0 3 NA
7 NA 2018-06-01 B B1 0 1 NA
8 NA 2018-06-02 B B2 0 2 NA
9 NA 2018-06-03 B B3 0 3 NA
To have separators start and end each data row made R believe those separators mark extra columns, which is not what is meant by the original question's OP.
So the second step is to keep only the real columns. I will do this subsetting the columns by their numbers, easily done, they usually are the first and last columns.
dat <- dat[-c(1, ncol(dat))]
dat
Date Emp1 Case Priority PriorityCountinLast7days
1 2018-06-01 A A1 0 0
2 2018-06-03 A A2 0 1
3 2018-06-03 A A3 0 2
4 2018-06-03 A A4 1 1
5 2018-06-03 A A5 2 1
6 2018-06-04 A A6 0 3
7 2018-06-01 B B1 0 1
8 2018-06-02 B B2 0 2
9 2018-06-03 B B3 0 3
That wasn't too hard, much better.
In this case there is still a problem, to coerce column Date to class Date.
dat$Date <- as.Date(dat$Date)
And the result is satisfactory.
str(dat)
'data.frame': 9 obs. of 5 variables:
$ Date : Date, format: "2018-06-01" "2018-06-03" ...
$ Emp1 : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 2 2 2
$ Case : Factor w/ 9 levels "A1","A2","A3",..: 1 2 3 4 5 6 7 8 9
$ Priority : int 0 0 0 1 2 0 0 0 0
$ PriorityCountinLast7days: int 0 1 2 1 1 3 1 2 3
Note that I have not set the more or less standard argument stringsAsFactors = FALSE. If needed, this should be done when running read.table.
The whole process took only 3 lines of base R code.
Finally, the end result in dput format, like it should be in the first place.
dat <-
structure(list(Date = structure(c(17683, 17685, 17685, 17685,
17685, 17686, 17683, 17684, 17685), class = "Date"), Emp1 = c("A",
"A", "A", "A", "A", "A", "B", "B", "B"), Case = c("A1", "A2",
"A3", "A4", "A5", "A6", "B1", "B2", "B3"), Priority = c(0, 0,
0, 1, 2, 0, 0, 0, 0), PriorityCountinLast7days = c(0, 1, 2, 1,
1, 3, 1, 2, 3)), row.names = c(NA, -9L), class = "data.frame")
md_table <- scan(text = "
+------------+------+------+----------+--------------------------+
| Date | Emp1 | Case | Priority | PriorityCountinLast7days |
+------------+------+------+----------+--------------------------+
| 2018-06-01 | A | A1 | 0 | 0 |
| 2018-06-03 | A | A2 | 0 | 1 |
| 2018-06-03 | A | A3 | 0 | 2 |
| 2018-06-03 | A | A4 | 1 | 1 |
| 2018-06-03 | A | A5 | 2 | 1 |
| 2018-06-04 | A | A6 | 0 | 3 |
| 2018-06-01 | B | B1 | 0 | 1 |
| 2018-06-02 | B | B2 | 0 | 2 |
| 2018-06-03 | B | B3 | 0 | 3 |
+------------+------+------+----------+--------------------------+",
what = "", sep = "", comment.char = "+", quiet = TRUE)
## it is clear that there are 5 columns
mat <- matrix(md_table[md_table != "|"], ncol = 5, byrow = TRUE)
# [,1] [,2] [,3] [,4] [,5]
# [1,] "Date" "Emp1" "Case" "Priority" "PriorityCountinLast7days"
# [2,] "2018-06-01" "A" "A1" "0" "0"
# [3,] "2018-06-03" "A" "A2" "0" "1"
# [4,] "2018-06-03" "A" "A3" "0" "2"
# [5,] "2018-06-03" "A" "A4" "1" "1"
# [6,] "2018-06-03" "A" "A5" "2" "1"
# [7,] "2018-06-04" "A" "A6" "0" "3"
# [8,] "2018-06-01" "B" "B1" "0" "1"
# [9,] "2018-06-02" "B" "B2" "0" "2"
#[10,] "2018-06-03" "B" "B3" "0" "3"
## a data frame with all character columns
dat <- setNames(data.frame(mat[-1, ], stringsAsFactors = FALSE), mat[1, ])
# Date Emp1 Case Priority PriorityCountinLast7days
#1 2018-06-01 A A1 0 0
#2 2018-06-03 A A2 0 1
#3 2018-06-03 A A3 0 2
#4 2018-06-03 A A4 1 1
#5 2018-06-03 A A5 2 1
#6 2018-06-04 A A6 0 3
#7 2018-06-01 B B1 0 1
#8 2018-06-02 B B2 0 2
#9 2018-06-03 B B3 0 3
## or maybe just use `type.convert` on some columns?
dat[] <- lapply(dat, type.convert)
Well, about this specific dataset I used the import feature in RStudio, but I took one additional step beforehand.
Copy the dataset into the Notepad file.
Replace all | characters with ,
Import the Notepad file using read.csv to RStudio using this code (seperate columns by ,).
But, if you mean use the R to fully understand it in one step, then I have no idea.
As it was suggested, you could use dput to save the content of a dataframe to a file, open the file in a text editor and paste its content. An example of mtcar's dataset limited to first 10 rows:
dput(mtcars %>% head(10), file = 'reproducible.txt')
The content of reproducible.txt can be used to make a dataframe/tibble as shown below. In such a case data the format is machine readable, but it is hard to be undestood by human at first glance (without pasting into R).
df <- structure(list(mpg = c(21, 21, 22.8, 21.4, 18.7, 18.1, 14.3,
24.4, 22.8, 19.2), cyl = c(6, 6, 4, 6, 8, 6, 8, 4, 4, 6), disp = c(160,
160, 108, 258, 360, 225, 360, 146.7, 140.8, 167.6), hp = c(110,
110, 93, 110, 175, 105, 245, 62, 95, 123), drat = c(3.9, 3.9,
3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92), wt = c(2.62,
2.875, 2.32, 3.215, 3.44, 3.46, 3.57, 3.19, 3.15, 3.44), qsec = c(16.46,
17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20, 22.9, 18.3), vs = c(0,
0, 1, 1, 0, 1, 0, 1, 1, 1), am = c(1, 1, 1, 0, 0, 0, 0, 0, 0,
0), gear = c(4, 4, 4, 3, 3, 3, 3, 4, 4, 4), carb = c(4, 4, 1,
1, 2, 1, 4, 2, 2, 4)), .Names = c("mpg", "cyl", "disp", "hp",
"drat", "wt", "qsec", "vs", "am", "gear", "carb"), row.names = c("Mazda RX4",
"Mazda RX4 Wag", "Datsun 710", "Hornet 4 Drive", "Hornet Sportabout",
"Valiant", "Duster 360", "Merc 240D", "Merc 230", "Merc 280"), class = "data.frame")
Comments
Post a Comment